简体中文
简体中文
English
注册
登录开发者平台
解决方案
行业解决方案
提供从智慧客房、智慧前台到智慧运营等酒店全场景品牌赋能,推进酒店行业数智化变革
一站式智慧照明系统解决方案,赋能企业快速实现人因照明、节能减排的智能化照明升级
综合应用智能化信息,令楼宇具有智慧和生命力,提供投资合理、安全高效、舒适便利的使用空间
快速实现数字化智慧办公空间,有效实现企业增效、降本和节能。
为连锁型品牌商业门店提供完善的管理系统, 提升门店效率
提供从租控授权、租务运营到园区管理等全方位租住解决方案,驱动租住行业智慧转型
融合全屋智能、地产社区等行业场景能力,提供居住空间丰富的产品矩阵和智能体验
IoT 助力校园场景智能化转型, 提升管理效率
全方位赋能开发者实现多场景智慧节能管理解决方案
以 IoT 平台助力中小制造企业, 实现降本、提质、增效
借助丰富硬件生态,一站式构建安全可靠私有化智能平台
为你的业务场景提供全面的 AI 服务及 AI Copilot 开发方案
海量成熟方案,超低研发门槛,极速落地产品智能化
开发者
与志同道合的开发者和专家共同交流
从初创企业到全球领先企业,涂鸦开发者平台协助实现客户成功。
快速获取并体验优秀的开发者案例产品
服务与支持
生态合作
成为涂鸦服务商,接入涂鸦的另一个选择,帮助更多开发者更快实现智能化
智能互联标识
携手开发者生态合作伙伴联合创新,持续创造互联互通商业价值
聚焦产业变革, 推动人工智能产业发展
智联万物,商者无界
安全与合规
严格遵守国内外信息安全标准和行业要求
诚邀安全业界同仁共同打造和维护物联网健康生态
支持
提供产品智能化开发全链路的常见问答
7×24一对一客服咨询
技术指导、故障修复以及问题解决
关于我们
全球化云开发者平台
探索涂鸦的故事
了解涂鸦的全球视野
涂鸦智能-产品解决方案|行业解决方案|全球智能化平台
涂鸦诚聘全球精英
首页>智商资讯>行业解读丨进行物联网数据管理企业是如何使用边缘计算的

行业解读丨进行物联网数据管理企业是如何使用边缘计算的

2020.8.7

  在未来,全球部署的物联网设备将大大增加,届时与云计算相比,速度更快,范围更广的边缘计算必将成为IT行业的一个热门。而要想学会充分利用边缘计算数据,IT专业人员必须学会使用机器学习算法,并将数据指定为实时或传统的云计算流程。

  与云计算的增长相比,边缘计算扩展速度更快,范围更广。根据调研机构Gartner公司的调查,到明年年底,全球部署的物联网设备将达到近400亿台,因此采用物联网设备的组织必须建立边缘计算处理资源。安全性可能是最大的问题,因为物联网具有较大的攻击面,这为黑客提供了一个大好时机,物联网网络需要边缘计算网关来锁定设备输出。但边缘计算的作用包含更多,以满足对物联网快速增长的期望。

  保护、共享、清洗物联网数据

  边缘计算服务器的很大一部分负担是在物联网和设备所输入的云平台之间的管道中堵塞漏洞。在例如流量管理和供应链运营等大规模场景中,边缘计算处理可以涉及将物联网数据动态路由到多个云平台,其中包括共享数据的伙伴组织的云平台。

  物联网数据也必须具有更多的价值。物联网设备在其功能的任何领域都不符合通用标准,包括安全性、协议和容错性。物联网硬件的使用年限可以延长到20年,这会增加很多数据干扰。边缘计算服务器也很难处理数据干扰。

  实时响应和决策支持会导致更大的问题

  安全和数据路由是主要挑战,但物联网数据管理现在面临更大的挑战:物联网网络需要立即响应或实时决策支持,例如在工厂中断或交通系统中遇到障碍时。

  在这种越来越常规的场景中,没有时间往返于云计算来处理数据、分析问题并返回结果。物联网技术必须在几秒钟内收到响应,而不是几小时或几分钟。

  当没有时间或没有机会让工作人员参与时,人工智能算法是处理需要动态响应的场景的最佳方法。物联网本身必须是一个智能系统,能够及时做出决策,它需要真正工作和生活在边缘。

  边缘化结构意味着需要分析物联网数据,不仅是家庭云的内容,也是B2B的云平台,而是实时和传统流程所需的数据。根据定义,需要立即将瞬时数据过滤到这些进程中。批处理数据可以存储在临时存储设备,并在空闲时传送到云端。

  在边缘变得更好

  最佳实践包括两项关键创新。物联网数据管理任务(包括管理数据传输)应该在边缘计算而不是云端进行。物联网通常包含附加到现有集中式技术的新架构,因此采用自上而下的方法来管理边缘计算收集的新数据是很诱人的。云计算系统不再是集中式端点,它们是众多目标中的一个。物联网技术在边缘计算执行大量闭环过程。更重要的是,要管理收集服务器的数据,尤其是动态路由和应用程序。

  在企业软件行业开发交钥匙技术之前,最经济有效的数据管理方式是通过定制管道和微服务,这些管道和微服务可以在分散的流程中轻松维护和扩展。为数据流量分析创建仪表板非常简单,Python是实现的一个绝佳选择。

  把模型和机器学习放在云端。如果特定物联网实现的目标是物理环境中的实时响应或实时决策支持,最好的方法是将分析和人工智能与物联网技术分离。让模型和机器学习过程保持在云端。随着模型的变化,用于生成物联网分析的算法将依次更新。这需要一些额外的工作,但比在边缘计算部署机器学习要少得多,因为在边缘计算部署机器学习将更难维护。

  目前,相关的行业标准还没有出台,但是由于很多组织都面临着边缘计算服务器部署的安全问题,所以维护 IT基础结构的人员经常会涉及到各种情况,但是我们需要数据架构师和企业解决方案架构师来支持物联网数据管理,支持边缘计算过程。没有有效的数据建模和强大的工作流程,路由和实时处理就不能进行。

  文章来源:《企业怎样使用边缘计算进行物联网数据管理》,智家网

遇到问题了么?联系专属客户经理在线解答