我们可以看到,物联网一直在不断地发展和演变着,大家只要能想象到的东西、事物、产业等,将会一步步变得更加智能,例如现在的智慧城市、智能家居、智能汽车、智能制造机械以及智能健康等。这些不断收集数据然后交换数据并完成用户指令任务所形成的一个全新的网络,就是物联网。
物联网和大数据正在走向胜利之路。不过,要想从这一创新中获益,还需要解决一些挑战和问题。在本文中,我们很高兴与大家分享多年来在物联网咨询领域积累的知识。
物联网大数据如何应用
首先,有多种方法可以从物联网大数据中获益:在某些情况下,通过快速分析就足够了,而一些有价值的见解只有在经过深入的数据处理之后才能获得。
实时监测。通过联网设备收集的数据可以用于实时操作:测量家中或办公室的温度、跟踪身体活动(计算步数、监测运动)等;实时监测在医疗保健中被广泛应用
数据分析。在处理物联网生成的大数据时,我们有机会超越监测,并从这些数据中获得有价值的见解:识别趋势,揭示看不见的模式并找到隐藏的信息和相关性。
流程控制和优化。来自传感器的数据提供了额外的上下文情境信息,以揭示影响性能和优化流程的重要问题。
▲交通管理:跟踪不同日期和时间的交通负荷,以制定出针对交通优化的建议。
▲零售:跟踪超市货架中商品的销售情况,并在商品快卖完之前及时通知工作人员补货。
▲农业:根据传感器的数据,在必要时给作物浇水。
预测性维护。通过联网设备收集的数据可以成为预测风险、主动识别潜在危险状况的可靠来源。
▲医疗保健:监测患者健康状态并识别风险以便及时采取措施。
▲制造业:预测设备故障,以便在故障发生之前及时解决。
物联网中的大数据挑战
除非处理大量数据以获取有价值的见解,否则这些数据完全没用。此外,在数据收集、处理和存储方面还有各种挑战。
▲数据可靠性。虽然大数据永远不会100%准确,但在分析数据之前,请务必确保传感器工作正常,并且用于分析的数据质量可靠,且不会因各种因素(例如,机器运行的不利环境、传感器故障)而损坏。
▲要存储哪些数据。联网设备会产生万亿字节的数据,选择存储哪些数据和删除哪些数据是一项艰巨的任务。
▲分析深度。一旦并非所有大数据都很重要,就会出现另一个挑战:什么时候快速分析就足够了,什么时候需要进行更深入的分析以带来更多价值。
▲安全。毫无疑问,各个领域的联网事物可以让我们的生活变得更加美好,但与此同时,数据安全也成一个非常重要的问题。
物联网解决方案中的大数据处理
在物联网系统中,物联网体系架构的数据处理组件因输入数据的特性、预期结果等而不同。我们已经制定了一些方法来处理物联网解决方案中的大数据。
数据来自与事物相连的传感器。“事物”可以是任何物体:烤箱、汽车、飞机、建筑、工业机器、康复设备等。数据可以是周期性的,也可以是流式的。后者对于实时数据处理和迅速管理事物至关重要。
事物将数据发送到网关,以进行初始数据过滤和预处理,从而减少了传输到下一个物联网系统中的数据量。
边缘分析。在进行深入数据分析之前,有必要进行数据过滤和预处理,以选择某些任务所需的最相关数据。此外,此阶段还可以确保实时分析,以快速识别之前在云中通过深度分析所发现的有用模式。
对于基本协议转换和不同数据协议之间的通信,云网关是必需的。它还支持现场网关和中央物联网服务器之间的数据压缩和安全数据传输。
物联网已经开始走进人们的日常生活中,但是想要让它更完善,还需要面临很大的创新和挑战,特别是对于它的正常工作、运行以及安全等方面,也是十分重要的问题。但是,当物联网发展成熟之后,就会形成一股强大的势头,从而给多个行业的企业,带来新的机遇。
文章来源:《基于物联网解决方案中的大数据应用分析》,智家网